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Functional Interrelationships Between Nuclear 
Structure and Transcriptional Control: 
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and Tissue-Specific Gene Expression 
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Abstract Multiple levels of nuclear structure contribute to functional interrelationships with transcriptional 
control in vivo. The linear organization of gene regulatory sequences is  necessary but insufficient to accommodate the 
requirements for physiological responsiveness to homeostatic, developmental, and tissue-related signals. Chromatin 
structure, nucleosome organization, and gene-nuclear matrix interactions provide a basis for rendering sequences 
accessible to transcription factors supporting integration of activities at independent promoter elements of cell cycle- 
and tissue-specific genes. A model is  presented for remodeling of nuclear organization to accommodate developmental 
transcriptional control. 
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INTRODUCTION uisite plasticity to accommodate cell cycle-depen- 

Development and tissue renewal necessitates 
the stringently regulated expression of genes 
that support proliferation as well as structural 
and functional parameters of specific pheno- 
types. A common denominator to both cell 
growth- and tissue-specific transcriptional regu- 
latory mechanisms, it is the requirement for 
insight into a fundamental paradox. How, with a 
limited representation of regulatory sequences 
and transcription factors, can a threshold con- 
centration for initiation of transcription be 
achieved? Let us phrase the question in a biologi- 
cal perspective. The concentration of a gene- 
specific regulatory element within the nucleus is 
approximately 15 nucleotides per 2.5 yards of 
DNA and the representation of cognate tran- 
scription factors is extremely restricted. In this 
Prospect article, we explore involvement of 
nuclear architecture in facilitation of in vivo 
transcriptional control and support for the req- 
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dent and steroid hormone responsive modula- 
tion of gene expression. Evidence is presented 
that is consistent with the emerging concept 
that multiple components of nuclear organiza- 
tion contribute to competency for transcription 
and the extent to which genes are transcribed. 
Redundancy of regulatory mechanisms that in- 
terface with structural components of the 
nucleus is considered within the context of op- 
tions for integration of physiological regulatory 
signals under diverse biological circumstances 
functionally linked to transcription during pro- 
liferation and differentiation. The dynamics of 
chromatin remodeling are examined in relation 
to  developmental and phenotypic requirements 
for gene expression. 

BIOLOGICAL MODEL FOR CELL CYCLE 
AND STEROID HORMONE RESPONSIVE 

DEVELOPMENTAL TRANSCRIPTIONAL 
CONTROL 

The cell cycle-dependent histone gene pro- 
moter provides a paradigm for pursuit of tran- 
scriptional regulatory mechanisms operative at 
the G1/S phase transition point in the cell cycle 
and competency for transcriptional control me- 
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diating cell cycle progression at the onset of 
DNA replication [reviewed in Stein et al., 1992, 
1994,1995, in press]. Regulation of histone gene 
expression is a key component of growth control 
in proliferating osteoblasts and downregulation 
occurs at the onset of differentiation [van Wijnen 
et al., 1992, 1994; Ramsey-Ewing et al., 1994; 
Pauli et al., 1987; Vaughan et al., 1995; Holthuis 
et al., 19901. The bone tissue-specific osteocalcin 
gene promoter is a paradigm for steroid hor- 
mone and growth factor-responsive transcrip- 
tional control that is functionally linked to ex- 
pression of phenotypic properties characteristic 
of postproliferative mature osteoblasts [reviewed 
in Stein et al., 1990; Stein and Lian, 1995; Lian 
and Stein, 19921. Consequently, examining his- 
tone and osteocalcin gene transcription during 
osteoblast differentiation permits investigation 
of mechanisms supporting both the activation 
and suppression of genes in relation to cell cycle 
and postproliferative endocrine-mediated con- 
trol. The availability of in vivo and culture mod- 
els for bone cell differentiation allows explora- 
tion of transcriptional regulatory parameters 
associated with development, as well as main- 
tenance of tissue organization and function 
[reviewed in Stein et al., 1990; Stein and Lian, 
1995; Lian and Stein, 19921. 

MULTIPLE LEVELS OF NUCLEAR 
ARCHITECTURE SUPPORT REGULATION 

OF TRANSCRIPTION 

It is becoming increasingly apparent that 
nuclear architecture provides a basis for support 
of stringently regulated modulation of cell 
growth- and tissue-specific transcription, which 
is necessary for the onset and progression of 
differentiation. Here, multiple lines of evidence 
point to contributions by three levels of nuclear 
organization to in vivo transcriptional control 
where structural parameters are functionally 
coupled to regulatory events. The primary level 
of gene organization establishes a linear order- 
ing of promoter regulatory elements. Overlap- 
ping transcription factor-binding sites are pres- 
ent within many promoter regulatory domains. 
This representation of regulatory sequences re- 
flects competency for responsiveness to cascades 
of physiological regulatory signals defining speci- 
ficity for protein-protein as well as protein- 
DNA interactions. However, interspersion of se- 
quences between promoter elements that exhibit 
coordinate and synergistic activities indicates 

the requirement of a structural basis for integra- 
tion of activities at independent regulatory do- 
mains. Parameters of chromatin structure and 
nucleosome organization are a second level of 
genome architecture that reduce the distance 
between promoter elements thereby supporting 
interactions between the modular components 
of transcriptional control [reviewed in Felsen- 
feld, 1992; Owen-Hughes and Workman, 1994; 
van Holde, 1988; Richard-Foy and Hager, 19871. 
Each nucleosome (approximately 140 nucleotide 
base pairs wound around a core complex of two 
each of H3, H4, H2A, and H2B histone proteins) 
contracts linear spacing by sevenfold. Higher- 
order chromatin structure further reduces nucle- 
otide distances between regulatory sequences. 
Folding of nucleosome arrays into solinoid-type 
structures provides potential for interactions 
that support synergism between promoter ele- 
ments and responsiveness to multiple signaling 
pathways. A third level of nuclear architecture 
that contributes to transcriptional control is the 
nuclear matrix. The anastomosing network of 
fibers and filaments that constitute the nuclear 
matrix supports the structural properties of the 
nucleus as a cellular organelle and accommo- 
dates the structural modifications associated 
with proliferation, differentiation, and changes 
necessary to sustain phenotypic requirements of 
specialized cells [Berezney and Coffey, 1975; Fey 
et al., 1984a, 1984b, 1986; Fey and Penman, 
1988; Nickerson et al., 1990; Getzenberg and 
Coffey, 1990; Nickerson and Penman, 1992; 
Berezney, 1991; Wan et al., 1994; Pienta and 
Coffey, 1991; Getzenberg et al., 1990, 1991a,b; 
Dworetzky et al., 1990; Penman, 1991; Pienta et 
al., 1991; Bidwell et al., 1994a,b,cl. Regulatory 
functions of the nuclear matrix include, but are 
by no means restricted to, gene localization, 
imposition of physical constraints on chromatin 
structure that support formation of loop do- 
mains, concentration and targeting of transcrip- 
tion factors, RNA processing and transport of 
gene transcripts, concentration and targeting of 
transcription factors, as well as imprinting and 
modifications of chromatin structure [Nelkin et 
al., 1980; Robinson et al., 1982; Schaack et al., 
1990; Stief et al., 1989; Zenk et al., 1990; Cock- 
erill and Garrard, 1986; Dworetzky et al., 1992; 
Guo et al., 1995; Gasser and Laemmli, 1986, 
1989; Ward and Coffey, 1990; He et al., 1990; 
Lawrence et al., 1989; Zeitlin et al., 1987; Carter 
et al., 1993; Guo et al., (Gasser); Spector, 1990; 
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Spector et al., 1991; Xing et al., 1993; Merriman 
et al., 1995; Bidwell et al., 1993; Barrack and 
Coffey, 1980, 1983; Kumara-Siri et al., 1986; 
Landers and Spelsberg, 1992; van Steensel et 
al., 1991; Ciejek et al., 1983; Thorburn and 
Knowland, 1993; Metzger and Korach, 1990; 
Metzger et al., 1991; Alexander et al., 1987; 
Barrack, 1987; Jarman and Higgs, 1988; Man- 
cini et al., 1994; Blencowe et al., 1994; van 
Wijnen et al., 1993; Bonifer et al., 1990; Phi-Van 
and Stratling, 1988, 1990; van Driel et al., 1991; 
von Kries et al., 1991; Luderus et al., 1992; 
Klehr et al., 1991; Berezney and Jeon, 1995; 
Stein et al., in press]. 

Taken together, these components of nuclear 
architecture facilitate biological requirements 
for physiologically responsive modifications in 
gene expression within the contexts of (1) homeo- 
static control involving rapid, short-term, and 
transient responsiveness; (2) developmental con- 
trol that is progressive and stage-specific; and 
(3) differentiation-related control associated with 
long-term phenotypic commitments to gene ex- 
pression for support of structural and func- 
tional properties of cells and tissues. 

We are just beginning to appreciate the signifi- 
cance of nuclear domains in the control of gene 
expression. However, it is already apparent that 
local nuclear environments generated by the 
multiple aspects of nuclear structure are inti- 
mately tied to  developmental expression of cell 
growth- and tissue-specific genes (see Prospects 
by Clemson and Lawrence and by Huang and 
Spector in this issue). From a broader perspec- 
tive, it is becoming increasingly evident that, 
reflecting the diversity of regulatory require- 
ments as well as the phenotype-specific and 
physiologically responsive representation of 
nuclear structural proteins, there is a recipro- 
cally functional relationship between nuclear 
structure and gene expression. Nuclear struc- 
ture is a primary determinant of transcriptional 
control, and expressed genes modulate the regu- 
latory components of nuclear architecture. The 
power of addressing gene expression within the 
three-dimensional context of nuclear structure 
would be difficult to overestimate. Membrane- 
mediated initiation of signaling pathways that 
ultimately influence transcription have been rec- 
ognized for some time. Extending the structure- 
regulation paradigm to nuclear architecture ex- 
pands the cellular context in which cell-structure 
gene expression interrelationships are opera- 
tive. 

CHROMATIN STRUCTURE AND NUCLEOSOME 
ORGANIZATION FACl LITATE DEVELOPMENTAL 

CELL CYCLE-DEPENDENT AND STEROID 
HORMONE-RESPONSIVE 

TRANSCRIPTIONAL CONTROL 

Several features of chromatin structure may 
contribute to developmental modifications in 
competency of regulatory sequences for transac- 
tivation factor binding, both independently and 
by functional cooperativity between the mul- 
tiple basal and enhancer elements of the histone 
(Fig. 1) and osteocalcin gene promoters (Fig. 2). 

The presence of nucleosomes in the human 
H4 histone gene promoter [Chrysogelos et al., 

Fig. 1. A: Regulation of histone gene expression during the 
cell cycle. First panel: Organization of the human histone H4 
gene promoter regulatory elements (sites I-IV). The transcrip- 
tion factors that exhibit sequence-specific interactions with 
these domains are indicated during the S phase of the cell cycle, 
when the gene is maximally transcribed. Site II contributes to 
cell cycle regulation of transcription. Site IV binds a nuclear 
matrix protein complex (NMP-1 /W-I ), while the protein-DNA 
interactions at sites 111 and I support general transcriptional 
enhancement. The site I I  complex includes cyclin A, cyclin- 
dependent kinase cdc2, and RB-related protein, CDP-1 and IRF 
growth regulatory factors, reflecting integration of phosphoryla- 
tion-mediated control of histone gene expression. Secondpanel: 
Occupancy of the four principal regulatory elements of the 
histone H4 gene promoter during the S phase of the cell cycle 
when transcription is maximal is schematically illustrated. Third 
panel: Site II transcription factor complex i s  modified by phos- 
phorylation during the Cl/C2/mitotic periods of the cell cycle 
resulting in altered levels of transcription. Phosphorylation- 
dependent dissociation of the IRF and HiNF-D (cdc2, cyclin A, 
CDP-1, and RB-related protein) factors occurs in non-S-phase 
cells. Fourth panel: Complete loss of transcription factor com- 
plexes at site II following exit from the cell cycle with the onset 
of differentiation. At this time, transcription is completely down- 
regulated. B: Schematic illustration of the remodeling of chro- 
matin structure and nucleosome organization, which accommo- 
dates cell cycle stage-specific and developmental parameters of 
histone gene promoter architecture to  support modifications in 
level of expression. Placement of nucleosomes and representa- 
tion as well as magnitude of nuclease-hypersensitive sites (A) 
are designated. The principal regulatory elements and transcrip- 
tion factors are shown. C :  Three-dimensional organization of 
the histone gene promoter. Model schematically presented for 
the spatial organization of the rat osteocalcin gene promoter 
based on evidence for nucleosome placement and the interac- 
tion of DNA-binding sequences with the nuclear matrix. These 
components of chromatin structure and nuclear architecture 
restrict mobility of the promoter and impose physical con- 
straints that reduce distances between proximal and distal 
promoter elements. Such a postulated organization of the osteo- 
calcin gene promoter can facilitate cooperative interactions for 
crosstalk between elements that mediate transcription factor 
binding and consequently determine the extent to which the 
gene is transcribed. 



Interrelationships Between Nuclear Structure and Transcriptional Control 201 



202 Stein et al. 

1985, 1989; Moreno et al., 1986; Pauli et al., 
19891 provides the possibility for increasing the 
proximity of independent regulatory elements 
that support synergistic andlor antagonistic co- 
operative interactions between histone gene 
DNA-binding activities. Involvement of chroma- 
tin structure with transcriptional regulation as 
related to growth control is consistent with varia- 

tions in nucleosome organization as a function 
of cell cycle progression [Moreno et al., 19861. 
Such growth-regulated changes in chromatin 
structure and nucleosome organization may en- 
hance and/or restrict accessibility of transcrip- 
tion factors and may modulate the extent to 
which DNA-bound factors are phosphorylated. 
Cell cycle and growth-related modifications in 

Figure 2. 
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chromatin organization of the human histone 
gene promoter include modifications in nucleo- 
some spacing as well as protein-protein and 
protein-DNA interactions both within nucleo- 
somes and in the internucleosomal sequences 
[Moreno et al., 19861. This is reflected by acces- 
sibility to micrococcal nuclease, DNase I, S1 
nuclease, and a series of restriction enzymes 
[Chrysogelos et al., 1985; Moreno et al., 1986; 
Pauli et al., 19891. 

The determinants of cell cycle-regulated 
changes in nucleosome organization remains to 
be established. Factors that control chromatin 
remodeling and that sustain conformations that 
support long-term phenotypic contributions to 
gene expression must be defined. Histone- 
histone and histoneDNA interactions, together 
with contributions of nonhistone proteins asso- 
ciated with nucleosomes or internucleosomal 
chromatin domains, are viable possibilities. The 

Fig. 2. A: Schematic representation of the osteocalcin gene 
promoter organization and occupancy of regulatory elements 
by cognate transcription factors paralleling and supportingfunc- 
tional relationships. Top: Suppression of transcription in prolif- 
erating osteoblasts. Middle: Activation of expression in differen- 
tiated cells. Bottom: Alternatively, enhancement of transcription 
by vitamin D. The placement of nucleosomes is indicated. 
Remodeling of chromatin structure in nucleosome organization 
to support suppression, basal, and vitamin D-induced transcrip- 
tion of the osteocalcin gene is indicated. (A) representation and 
magnitude of DNase I hypersensitive sites. Gene-nuclear ma- 
trix interactions are shown. 6: Three-dimensional organization 
of the rat osteocalcin gene promoter. Model schematically 
presented for the spatial organization of the rat osteocalcin 
gene promoter based on evidence for nucleosome placement 
and the interaction of DNA binding sequences with the nuclear 
matrix. These components of chromatin structure and nuclear 
architecture restrict mobility of the promoter and impose physi- 
cal constraints that reduce distances between proximal and 
distal promoter elements. Such postulated organization of the 
osteocalcin gene promoter can facilitate cooperative interac- 
tions for crosstalk between elements that mediate transcription 
factor binding and consequently determine the extent to which 
the gene i s  transcribed. C: Postulated remodeling of chromatin 
structure, nucleosome organization, and the nuclear matrix to 
support transcriptional activation and repression of the osteocal- 
cin gene. Contributions of multiple components of nuclear architec- 
ture to genenuclear matrix interrelationships and the association of 
transcription factors with both gene regulatory elements and the 
nuclear matrix are schematically illustrated. Modifications of struc- 
ture-function relationships are shown that mediate transitions from 
the repressed to the transcriptionally active regulatory states. Right: 
Model for osteocalcin gene-nuclear matrix interactions with occu- 
pancy of basal, tissue-specific, and enhancer sequences by cognate 
transcription factors. Also shown is a model for crosstalk between 
proximal and distal regulatory domains of the osteocalcin gene 
promoter via direct interactions between factors that are parameters 
of nuclear architecture. 

well-documented post-translational modifica- 
tions of histone proteins, particularly acetyla- 
tion, which are associated with transcriptionally 
active chromatin, suggest a potential regulatory 
mechanism. Here, the findings of Davie and 
co-workers indicate that histone acetylases and 
deacetylases are associated with the nuclear ma- 
trix, providing an additional example of a man- 
ner in which nuclear architecture, may deter- 
mine transcriptional competency of chromatin 
[Hendzel et al., 1991; Hendzel and Davie, 1992; 
Brandes et al., 19921. Recent characterization of 
regulatory mechanisms that accompany acetyla- 
tion-mediated remodeling of yeast chromatin 
may be extrapolated to higher eukaryotic sys- 
tems [Wright et al., 1992; Renauld et al., 1993; 
Hecht et al., 1995; Marsolier et al., 19951. 

Modifications in parameters of chromatin 
structure and nucleosome organization parallel 
both competency for transcription and the ex- 
tent to which the osteocalcin gene is transcribed 
[Bortell et al., 1992; Montecino et al., 1994; in 
press]. The biological significance of chromatin 
organization in fidelity of osteocalcin gene tran- 
scriptional control in intact cells is provided by 
promoter sequence requirements for expression 
of transfected genes. Significant differences are 
observed when comparing transcriptional activ- 
ity in transiently transfected cells to cell lines 
and transgenic animals in which constructs are 
stably integrated and packaged as chromatin 
[Montecino et al., in press; Frenkel et al., 19961. 
Specific changes in chromatin organization oc- 
cur in response to  physiological mediators of 
basal expression and steroid hormone respon- 
siveness. Thus, a conceptual and experimental 
basis is provided for the involvement of nuclear 
architecture in developmental, homeostatic, and 
physiologic control of osteocalcin gene expres- 
sion during the establishment and maintenance 
of bone tissue structure and activity. 

In both normal diploid osteoblasts and osteo- 
sarcoma cells, basal expression and enhance- 
ment of osteocalcin gene transcription are accom- 
panied by two alterations in structural properties 
of chromatin. Nuclease hypersensitivity of se- 
quences flanking the tissue-specific osteocalcin 
box and the vitamin D-responsive element en- 
hancer domain are observed [Montecino et al., 
1994, in press; Breen et al., 19941. Together 
with modifications in nucleosome placement 
[Montecino et al., in press], a basis for accessibil- 
ity of transactivation factors to basal and steroid 
hormone-dependent regulatory sequences can 
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be explained. In early-stage proliferating normal 
diploid osteoblasts, when the osteocalcin gene is 
repressed, a nucleosome is placed in the osteocal- 
cin box, which is required for control of basal 
tissue-specific expression. At this time, a nu- 
cleosome is also placed in the VDRE promoter 
sequence, which supports steroid hormone- 
dependent transcriptional enhancement. Nucle- 
ase-hypersensitive sites are not present in the 
vicinity of these regulatory elements. By con- 
trast, when osteocalcin gene expression is tran- 
scriptionally upregulated postproliferatively and 
vitamin D-mediated enhancement of transcrip- 
tion occurs, the osteocalcin box and VDRE be- 
come nucleosome free; these regulatory do- 
mains are flanked by DNase I-hypersensitive 
sites. The complete absence of hypersensitivity 
and the presence of nucleosomes in the VDRE 
and osteocalcin box domains of the osteocalcin 
gene promoter in ROS 24/1 cells that lack the 
vitamin D receptor additionally corroborate these 
findings. Strikingly, the initial 1.1 kb of the 
osteocalcin promoter is sufficient to  restore ma- 
jor components of chromatin structure that are 
absent following random integration in the ge- 
nome of transfected osteoblastic cells [Frenkel 
et al., 19961. Taken together, these studies pro- 
vide evidence for functional relationships be- 
tween structural modifications in chromatin and 
physiologically regulated levels of osteocalcin 
gene transcription. 

Despite the compelling experimental basis for 
these structure-function interrelationships, the 
cause-and-effect parameters remain t o  be estab- 
lished. Sequences and regulatory factors that 
are rate-limiting for modulation of chromatin 
structure and nucleosome organization from the 
perspectives of determinants or immediate con- 
sequences of osteocalcin transcriptional control 
require definition. It should be noted that a 
placed nucleosome in a promoter domain does 
not preclude contributions of the element to 
transcriptional regulatory activity. Nucleosomes 
are organized as octomeric nucleoprotein com- 
plexes, each containing a core of H3-H4 and 
H2A-H2B heterodimers, with DNA on the out- 
side and potentially accessible for functional 
interactions with transcription factors. 

NUCLEAR MATRIX CONTRIBUTES TO CELL 
CYCLE-REGULATED DEVELOPMENTAL 

AND STEROID HORMONE-DEPENDENT, 
TISSUE-SPECIFIC TRANSCRIPTION 

When actively transcribed in early-stage pro- 
liferating osteoblasts, the cell cycle-regulated 

histone gene is associated with the nuclear ma- 
trix. Consistent with involvement of the nuclear 
matrix in developmental control of gene expres- 
sion, the histone H4 gene distal promoter bind- 
ing factor NMPl/YYl has been shown to be a 
nuclear matrix component. The specificity and 
functionality of the nuclear matrix-associated 
N M P l / W l  transcription factor with the his- 
tone gene promoter is indicated by gel mobility 
shift analysis, footprint analysis, ultraviolet (W) 
cross-linking studies, and in vivo expression ex- 
periments [Dworetzky et al., 1992; Guo et al., 
19951 (Fig. 1). 

Involvement of the nuclear matrix in control 
of osteocalcin gene transcription is provided by 
several lines of evidence (Fig. 2). A parallel rep- 
resentation of nuclear matrix proteins with de- 
velopmental expression of the osteocalcin gene 
during osteoblast differentiation was the initial 
suggestion of functional linkage between the 
nuclear matrix and osteocalcin gene expression 
[Dworetzky et al., 19901. There are developmen- 
tal modifications in the selective partitioning of 
the ubiquitous fos/jun-related transcription fac- 
tors that bind to  a series of osteocalcin gene 
promoter elements between the nuclear matrix 
and nonmatrix nuclear fractions during osteo- 
blast differentiation [van Wijnen et al., 19931. 

One of the most compelling lines of support 
for a role of nuclear matrix proteins in steroid 
hormone-dependent osteocalcin gene transcrip- 
tional control is the demonstration that two 
nuclear matrix proteins [Banerjee et al., 1996, 
Merriman et al., 1995; Bidwell et al., 1993; Guo 
et al., 1995, submitted] designated NMPl and 
NMP2 bind with specificity to sequences associ- 
ated with the osteocalcin gene vitamin D-respon- 
sive element (VDRE). NMP2, which we have 
established is an AML-related, bone phenotype- 
specific transcription factor [Banerjee et al., 
1996, Merriman et al., 1995; Bidwell et al., 19931, 
interacts with sequences flanking, but not over- 
lapping, the steroid half-element motifs of the 
osteocalcin gene VDRE. NMP1, which we have 
shown is the W1 transcription factor, interacts 
with the proximal steroid half-element within 
the osteocalcin gene VDRE. Taken together, 
these relationships between organization of 
nuclear matrix protein binding domains within 
and contiguous to the osteocalcin gene VDRE 
suggests options for both positive and negative 
control of vitamin D-mediated transcriptional 
enhancement. Based on overlapping binding do- 
mains within the VDRE for the VDR and the 
NMPl /W1 nuclear matrix protein transcrip- 
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tion factor [Guo et al., 19961, one can speculate 
that reciprocal interactions of NMPl and VDR 
complexes may contribute to competency of the 
VDRE to support transcriptional enhancement. 
Binding of NMP2 at the VDRE flanking se- 
quence may establish permissiveness for VDR 
interactions by gene-nuclear matrix associa- 
tions that facilitate conformational modifica- 
tions in the transcription factor recognition se- 
quences. Direct evidence for modulation of 
steroid hormone-responsive transcriptional regu- 
lation of osteocalcin gene expression by nuclear 
matrix proteins includes (1) upregulation of os- 
teocalcin gene transcription following in vivo 
overexpression of AML genes transfected into 
osteoblastic cells [Banerjee et al., 1996, Merri- 
man et al., 1995; Bidwell et al., 19931, and (2) a 
dose-dependent abrogation of ligand- and recep- 
tor-mediated vitamin D enhancement of osteo- 
calcin gene transcription following overexpres- 
sion ofYYl in intact cells [Guo et al., submitted]. 
Taken together, these findings implicate nuclear 
matrix proteins in facilitation of osteocalcin gene 
expression by NMPB/AML as well as mutual 
exclusive binding of VDR/RXR or NMPl/YYl 
transcription factors. Support for involvement 
of nuclear organization in facilitation of steroid 
hormone-dependent transcriptional control is 
further provided by the demonstration of inter- 
actions between the vitamin D receptor and 
TFIIB, implicating crosstalk between the VDRE 
and TATA domains. These interactions have 
been shown to support enhancement of osteocal- 
cin gene transcription [Blanco et al., 1995; Mac- 
Donald et al., 19951. 

NUCLEAR ARCHITECTURE FAClLlTl ES 
INTEGRATION OF ACTIVITIES 

AT INDEPENDENT PROMOTER 
REGULATORY ELEMENTS 

It is apparent from available findings that the 
linear organization of gene regulatory sequences 
is necessary but insufficient to  accommodate the 
requirements for physiological responsiveness 
t o  homeostatic, developmental, and tissue- 
related signals. It would be presumptive to pro- 
pose a formal model for the three-dimensional 
organization of the histone and osteocalcin gene 
promoters. However, the working model pre- 
sented in Figures 1 and 2 represents postulated 
interactions between histone and osteocalcin 
gene promoter elements that reflect the poten- 
tial for integration of activities by nuclear archi- 
tecture to support transcriptional control within 
the three-dimensional context of cell structure 

and regulatory requirements at  the cell and 
tissue levels. 

It is becoming increasingly evident that devel- 
opmental transcriptional control and modifica- 
tions in transcription to accommodate homeo- 
static regulation of cell and tissue function is 
modulated by the integration of a complex series 
of physiological regulatory signals. Fidelity of 
responsiveness necessitates the convergence of 
activities mediated by multiple regulatory ele- 
ments of gene promoters. Our current knowl- 
edge of promoter organization and the reper- 
toire of transcription factors that mediate 
activities provides a single-dimensional map of 
options for biological control. We are beginning 
to appreciate the additional structural and func- 
tional dimensions provided by chromatin struc- 
ture, nucleosome organization, and subnuclear 
localization and targeting of both genes and 
transcription factors. Particularly exciting is in- 
creasing evidence for dynamic modifications in 
nuclear structure that parallel developmental 
expression of genes. The extent to which nuclear 
structure regulates and/or is regulated by modi- 
fications in gene expression remains to be experi- 
mentally established. 

Despite the emerging evidence for nuclear 
structure-gene expression interrelationships, a 
number of fundamental questions remain to  be 
experimentally addressed. The complexities to 
levels of nuclear organization is becoming in- 
creasingly apparent. Our awareness of nuclear 
domains that are dedicated to  specific compo- 
nents of gene expression has evolved from con- 
sidering the nucleolar localization of ribosomal 
RNA transcription an exception, to defining a 
broad spectrum of nuclear domains within the 
context of support for expression of specific 
genes. There is a quest for understanding of 
interrelationships between multiple components 
of nuclear structure with subtleties in transcrip- 
tion and transcript processing. Among the chal- 
lenges that we now face is the necessity to define 
functionally the cause and/or effect components 
of interrelationships between structural param- 
eters of the nucleus associated with specific tran- 
scriptional regulatory mechanisms. 

During the past several years, there has been 
a rapid accrual in definitions of structures that 
are functionally linked to steps in transcrip- 
tional activation and RNA processing. However, 
many represent advances that have been descrip- 
tive at both the structural and molecular levels. 
We are now in a position to pursue biochemical 
determinants and functional consequences of 
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activities associated with gene expression as it 
regulates, and is regulated by, components of 
nuclear architecture. Elucidation of rate-limit- 
ing regulatory components of nuclear structure- 
function interrelationships will provide insight 
into control of plasticity required for remodeling 
of nuclear structure in relation to transcrip- 
tional control. Here, physiologically responsive 
accommodations to modulations in gene expres- 
sion include, but are not restricted to, changes 
in nucleosome placement, intranucleosomal 
properties, as well as higher-order nuclear orga- 
nization. 
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